

1 E CONGRESO de ELECTROMECANICA RINTERNACIONAL **ELECTRICA** 15 - 16 - 17 Junio 2016

METODOLOGÍA PARA EL ANÁLISIS DE VIDA ÚTIL REMANENTE EN RODAMIENTOS, APLICACIÓN A LOS MOTORES ELÉCTRICOS

Mauricio Holguín Londoño, Álvaro Ángel Orozco Gutiérrez

Universidad Tecnológica de Pereira, Colombia Doctorado en Ingeniería, Área de Automática Grupos de Investigación en Automática y en Gestión de Activos Eléctricos, Electrónicos y Automáticos

Universidad Tecnológica de Pereira

Introducción

Al 2000 en USA, entre 1/3 y 1/2 del mantenimiento industrial era no efectivo [1]. En 20 años, el mantenimiento no correctivo ha pasado del 45,4% al 65,9%; en países industrializados el 72,4% [2].

Ahora se encara el reto de Vida Útil Remanente-RUL, entregando información de localización y severidad, con proceso de detección de ocurrencia y análisis de las características observadas [7 – 11].

Planteamiento

Las estrategias corrientes de análisis incluyen:

Modelo basado en señales (datos): emplean características en un espacio de representación (tiempo, frecuencia, modal). Emplean técnicas de aprendizaje (ARMA, AI, ANN, Fuzzy Logic, etc.) con limitaciones por su dificultad de interpretación, estructura y ser sensibles a la sintonización de parámetros [12 – 19].

Modelo físico: requieren conocimiento específico del sistema; no reflejan un modelo general para todos los modos de fallo, ni para el ciclo completo de vida. Los sistemas físicos se basan en dispositivos no lineales, implicando incertidumbre y simplificaciones debidas a la naturaleza estocástica involucrada en ellos y en sus propios mecanismos de degradación [8, 18 – 22].

Planteamiento

La literatura carece de la conjunción de espacios de representación, no evalúan relevancia de cada espacio ni la contribución individual de las características, con miras a incrementar la exactitud del diagnóstico y disminuir la complejidad computacional [14, 15, 17 – 19].

Los Modelos Ocultos de Markov (HMM) son apropiados para analizar sistemas aleatorios dinámicos, con el fin de realizar predicción sobre el diagnóstico, al ser de fácil interpretación y actuar en ambientes de aprendizaje competitivo [8, 23, 24]. Los HMM modelan y simulan la dinámica cambiante de datos estocásticos, reflejados en las variables latentes del proceso [25, 26].

Objetivos

Contribuir a la disponibilidad, producción, eficiencia energética y entornos seguros de operación relacionados con motores eléctricos y específicamente en rodamientos, los cuales son el 51% de los modos de fallos en motores.

Conjugar espacios de representación con el fin de diagnosticar y pronosticar fallos en rodamientos, integrando modos de fallos y niveles de severidad, mediante Modelos Ocultos de Markov.

Evaluar la relevancia de espacios, y sus características, con el fin de obtener mejoras en la eficiencia de diagnóstico y en el tiempo de entrenamiento.

Materiales

ESPACIOS DE REPRESENTACIÓN

T: Tiempo [27]

F: Frecuencia [28]

T-F: Tiempo-Frecuencia [28, 29]

- M: Coeficientes Cepstrales en Escala Mel
- W: Transformada Wavelet de 2 niveles
- S: Transformada Fourier de Tiempo Reducido

Agrupamiento con el fin de cuantizar las observaciones. Se emplea *k-means clustering* [30, 31]. Se definen k centroides y se itera minimizando la función objetivo de distancia entre observaciones continuas y centroides. La colección de centroides es el Libro de Códigos.

Materiales

	ld.	Característica		ld.	Característica					
	T1	Valor medio		T10	Factor de holgura					
	T2	Desviación estándar		T11	Factor de impulso					
	Т3	Asimetría		T12	Límite superior del histograma					
	T4	Kurtosis		T13	Límite inferior del histograma					
Tiempo [27]	T5	Pico positivo máximo		T14	Verosimilitud log. Negativa					
	T6	Raíz media cuadrática		T15	Entropía de Shannon					
	T7	Factor de forma		T16	Raíz media cuadrática de picos					
	T8	Factor de impacto (FK)		T17	Des. estándar sobre umbral del 70%					
	Т9	Factor de media sin signo								
	ld.	Característica		ld.	Característica					
	T1	Frecuencia media		Т9	Inversa del RMS					
	T2	Varianza		T10	Desviación sobre frecuencia central					
	Т3	Asimetría		T11	Promedio sobre tercer momento					
Fracuoncia [28]	T4	Kurtosis		T12	Promedio sobre cuarto momento					
riecuencia [20]	T5	Frecuencia central		T13	Raíz promedio del primer momento					
	T6	Desviación		T14	Raíz media geométrica					
	T7	Raíz media cuadrática		T15	Desviación media absoluta					
	Т8	Media cuadrática		T16	Rango intercuartílico					
	M: banco de 24 filtros y 12 coeficientes numerados respectivamente de M1 a M12									
Tiempo- Frecuencia	W: A Baja	lta frecuencia: Media (W1), Valo frecuencia: Media (W5), Valor m	r m áxir	áximo (no (Wé	(W2), Kurtosis (W3), Energía Shannon (W4); 5), Kurtosis (W7), Energía Shannon (W8)					
	S: Kurtosis (S1), Media (S2), Varianza (S3) y Pico máximo (S4)									

Materiales – Cadenas de Markov

Sistema que, para un instante de tiempo, se considera en uno de un conjunto discreto de S estados. El sistema realiza transiciones entre estados (q) según un conjunto de probabilidades de transición. Es de primer orden si su probabilidad de transición solo depende del estado previo:

$$P\{q_t = S_j \mid q_{t-1} = S_{i'}q_{t-2} = S_{k'} \dots\} = P\{q_t = S_j \mid q_{t-1} = S_i\}$$

En un Modelo Oculto de Markov (HMM) las salidas son función probabilística del estado, y por tanto, el modelo es un doble proceso estocástico embebido que no es directamente observable (su estado) pero si indirectamente a través de las secuencias de salida (y) [32, 33].

Materiales – Base de datos

Tomada del Bearing Data Center – Western Reserve University. Motor eléctrico de 2 HP, señales de aceleración en rodamientos, con fallas inducidas por electro-descarga. Fallos con diámetros entre 7 a 40 milésimas de pulgada, profundidad de 0.011024 pulgadas. Motor con cargas de 0 a 3 HP, velocidad entre 1720 a 1797 RPM y muestreo a 12 kHz [34].

Metodología

Marco experimental

- •Cinco espacios de representación: T, F, M, W, S.
- •La base de datos se divide en 60% para entrenamiento y 40% para validación.
- •Segmentos de ventana de 200 ms, se aplica Hamming y traslape de 2/3.
- •Se emplean *k-means clustering* con 24 centroides.
- •Se entrena modelo HMM por nivel de degradación, variando número de estados HMM de 1 hasta 8 y repitiendo 30 veces cada entrenamiento.
- •Los algoritmos se corren en una máquina Intel® Core™ i7-4510, CPU 2.00GHz – 3.1GHz, 8GB RAM, S.O. Windows 8.1 de 64bits.

Exp. 1: Eficiencia por espacio

Exp. 2: Relevancia características

Eficiencia (parte superior) y desviación (parte inferior)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Т	0.379	0.903	0.508	0.673	0.874	0.891	0.775	0.899	0.844	0.764	0.716	0.865	0.893	0.894	0.806	0.895	0.901
	0.233	0.073	0.173	0.214	0.088	0.093	0.207	0.119	0.121	0.206	0.214	0.089	0.111	0.089	0.187	0.073	0.105
F	0.803	0.856	0.541	0.574	0.813	0.857	0.883	0.895	0.902	0.651	0.521	0.568	0.103	0.817	0.827	0.836	
	0.239	0.118	0.271	0.297	0.170	0.113	0.112	0.098	0.098	0.181	0.283	0.291	0.083	0.159	0.182	0.133	
Μ	0.929	0.930	0.928	0.937	0.946	0.920	0.945	0.929	0.929	0.942	0.929	0.935					
	0.088	0.075	0.118	0.072	0.085	0.095	0.062	0.069	0.112	0.061	0.104	0.813					
W	0.721	0.687	0.720	0.591	0.746	0.697	0.343	0.739									
	0.229	0.208	0.130	0.200	0.179	0.218	0.227	0.193									
S	0.425	0.781	0.783	0.649													
	0.090	0.135	0.138	0.165													

Exp. 2: Relevancia características

Eficiencia (parte superior) y desviación (parte inferior)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Т	0.379	0.903	0.508	0.673	0.874	0.891	0.775	0.899	0.844	0.764	0.716	0.865	0.893	0.894	0.806	0.895	0.901
	0.233	0.073	0.173	0.214	0.088	0.093	0.207	0.119	0.121	0.206	0.214	0.089	0.111	0.089	0.187	0.073	0.105
F	0.803	0.856	0.541	0.574	0.813	0.857	0.883	0.895	0.902	0.651	0.521	0.568	0.103	0.817	0.827	0.836	
	0.239	0.118	0.271	0.297	0.170	0.113	0.112	0.098	0.098	0.181	<u>0.283</u>	<u>0.291</u>	0.083	0.159	0.182	0.133	
Μ	0.929	0.930	0.928	0.937	0.946	0.920	0.945	0.929	0.929	0.942	0.929	0.935					
	0.088	0.075	0.118	0.072	0.085	0.095	0.062	0.069	0.112	0.061	0.104	0.813					
W	0.721	0.687	0.720	0.591	0.746	0.697	0.343	0.739									
	0.229	0.208	0.130	0.200	0.179	0.218	0.227	0.193									
S	0.425	0.781	0.783	0.649													
	0.090	0.135	0.138	0.165													

Exp. 3: Fusión y niveles de severidad

Eficiencia y desviación, según severidad, con 4 estados HMM.

Esp.	T(s)	Ball N1	Ball N2	Ball N3	Inner	Inner	Inner	Normal	Outer	Outer	Outer	Total
					N1	N2	N3		N1	N2	N3	
TF	360.4	0.840	1.000	0.840	1.000	0.900	0.940	1.000	0.980	0.920	0.960	0.938
		0.184	0.000	0.246	0.000	0.194	0.190	0.000	0.063	0.140	0.084	0.062
ТМ	321.7	0.860	0.920	0.640	1.000	0.820	0.980	1.000	0.960	0.820	0.980	0.898
		0.212	0.103	0.263	0.000	0.220	0.063	0.000	0.084	0.175	0.063	0.115
ΤW	356.3	0.860	1.000	0.620	1.000	0.940	0.960	1.000	0.940	0.880	0.960	0.916
		0.165	0.000	0.290	0.000	0.135	0.084	0.000	0.135	0.140	0.084	0.115
FM	361.3	0.860	0.960	0.840	1.000	0.960	0.940	0.980	0.900	0.860	1.000	0.930
		0.135	0.084	0.158	0.000	0.127	0.135	0.063	0.170	0.190	0.000	0.061
FW	414.8	0.840	0.980	0.900	1.000	0.920	0.740	1.000	0.900	0.820	1.000	0.910
		0.207	0.063	0.194	0.000	0.193	0.284	0.000	0.105	0.199	0.000	0.089
MW	378.1	0.920	1.000	0.660	0.880	0.680	0.840	1.000	0.980	0.760	0.740	0.846
		0.103	0.000	0.232	0.169	0.301	0.227	0.000	0.063	0.227	0.268	0.130
TFM	355.4	0.740	0.980	0.780	1.000	0.840	0.980	1.000	0.940	0.880	0.980	0.912
		0.232	0.063	0.290	0.000	0.207	0.063	0.000	0.135	0.140	0.063	0.096
TFW	402.8	0.740	0.960	0.760	1.000	0.760	0.960	1.000	0.960	0.840	0.980	0.896
		0.232	0.084	0.246	0.000	0.158	0.084	0.000	0.127	0.127	0.063	0.108
TMW	384.8	0.860	0.980	0.740	1.000	0.900	0.980	1.000	1.000	0.840	0.940	0.924
		0.190	0.063	0.250	0.000	0.141	0.063	0.000	0.000	0.158	0.097	0.088
FMW	399.2	0.820	1.000	0.880	1.000	0.900	0.840	1.000	0.960	0.840	1.000	0.924
		0.382	0.000	0.140	0.000	0.141	0.158	0.000	0.127	0.158	0.000	0.076
TFMW	402.7	0.840	0.980	0.740	1.000	0.820	0.960	1.000	0.940	0.880	0.960	0.912
		0.263	0.063	0.212	0.000	0.175	0.127	0.000	0.135	0.140	0.084	0.088

Exp. 3: Fusión y niveles de severidad

Eficiencia y desviación, según severidad, con 4 estados HMM.

Esp.	T(s)	Ball N1	Ball N2	Ball N3	Inner	Inner	Inner	Normal	Outer	Outer	Outer	Total
					N1	N2	N3		N1	N2	N3	
TF	360.4	0.840	1.000	0.840	1.000	0.900	0.940	1.000	0.980	0.920	0.960	<u>0.938</u>
	\frown	0.184	0.000	0.246	0.000	0.194	0.190	0.000	0.063	0.140	0.084	<u>0.062</u>
ТМ	321.7	0.860	0.920	0.640	1.000	0.820	0.980	1.000	0.960	0.820	0.980	0.898
		0.212	0.103	0.263	0.000	0.220	0.063	0.000	0.084	0.175	0.063	0.115
ΤW	356.3	0.860	1.000	0.620	1.000	0.940	0.960	1.000	0.940	0.880	0.960	0.916
	\frown	0.165	0.000	0.290	0.000	0.135	0.084	0.000	0.135	0.140	0.084	0.115
FM	361.3	0.860	0.960	0.840	1.000	0.960	0.940	0.980	0.900	0.860	1.000	0.930
		0.135	0.084	0.158	0.000	0.127	0.135	0.063	0.170	0.190	0.000	0.061
FW	414.8	0.840	0.980	0.900	1.000	0.920	0.740	1.000	0.900	0.820	1.000	0.910
		0.207	0.063	0.194	0.000	0.193	0.284	0.000	0.105	0.199	0.000	0.089
MW	378.1	0.920	1.000	0.660	0.880	0.680	0.840	1.000	0.980	0.760	0.740	0.846
	\frown	0.103	0.000	0.232	0.169	0.301	0.227	0.000	0.063	0.227	0.268	0.130
TFM	355.4	0.740	0.980	0.780	1.000	0.840	0.980	1.000	0.940	0.880	0.980	0.912
		0.232	0.063	0.290	0.000	0.207	0.063	0.000	0.135	0.140	0.063	0.096
TFW	402.8	0.740	0.960	0.760	1.000	0.760	0.960	1.000	0.960	0.840	0.980	0.896
		0.232	0.084	0.246	0.000	0.158	0.084	0.000	0.127	0.127	0.063	0.108
ΤMW	384.8	0.860	0.980	0.740	1.000	0.900	0.980	1.000	1.000	0.840	0.940	0.924
	\frown	0.190	0.063	0.250	0.000	0.141	0.063	0.000	0.000	0.158	0.097	0.088
FMW	399.2	0.820	1.000	0.880	1.000	0.900	0.840	1.000	0.960	0.840	1.000	0.924
		0.382	0.000	0.140	0.000	0.141	0.158	0.000	0.127	0.158	0.000	0.076
TFMW	402.7	0.840	0.980	0.740	1.000	0.820	0.960	1.000	0.940	0.880	0.960	0.912
		0.263	0.063	0.212	0.000	0.175	0.127	0.000	0.135	0.140	0.084	0.088

Exp. 4: Selección por espacio

Esquema Leave-One-Out, según resultados del experimento 2

Exp. 4: Selección por espacio

Esquema Leave-One-Out, según resultados del experimento 2

Conclusiones - I

- •Se logró una eficiencia de diagnóstico superior al 90% para los espacios de representación individuales del tiempo, la frecuencia y MFCC en tiempo-frecuencia.
- •Los espacios T y F presentan sobre entrenamiento, con el incremento los estados HMM. M mejora la eficiencia y reduce la desviación al incrementar los estados HMM, pero compromete el tiempo de entrenamiento. Las características M poseen relevancia homogénea, mientras que las características W y S presentan relevancias bajas, al no superar el 75% cada una.
- •Se deben conjugar espacios y características, ya que el desempeño global bajo de un espacio, o una característica, no implica que estos no aporten información de variabilidad del proceso.

Conclusiones - II

- •Conjugar espacios logró eficiencias del 93,8% con T-F y del 93,0% con F-M. Igualmente se logró eficiencia del 92,4% al fusionar T-M-W y F-M-W.
- •La decisión binaria de fallo y no fallo es claramente distinguible.
- •El tiempo de entrenamiento individual de M es de un orden de magnitud superior a los demás. Al conjugarlo con los otros espacios, el tiempo se reduce un orden de magnitud.
- •Lo anterior permite decidir, dependiendo de la aplicación, sacrificar eficiencia de diagnóstico a cambio de mejoras en el tiempo de entrenamiento.

Aplicabilidad en otras áreas

Fase de desarrollo experimental para realizar diagnóstico en motores diesel en la flota de una de las empresas (Integra) del sistema de transporte masivo en la ciudad de Pereira (Megabús).

Estudio y desarrollo de aplicaciones para el diagnóstico, prevención y ayuda quirúrgica en el tratamiento de patologías neurológicas como las enfermedades del Alzheimer y Parkinson, en conjunto con Neurocentro – Pereira.

Referencias - I

- [1] A. Heng, S. Zhang, A.C.C. Tan, J. Mathew, Rotating machinery prognostics: State of the art, challenges and opportunities, Mechanical Systems and Signal Processing, Vol. 23, Elsevier 2009, pág. 724–739.
- [2] K. M. Blache, Benchmarks Shed Light on Maintenance & Reliability Perceptions, Reliabilityweb.com, 2015, consultado en el URL: http://reliabilityweb.com/index.php/articles/ benchmarking_a_better_understanding en Mayo 25 de 2015.
- [3] The International Energy Agency, KeyWorld Energy Statistics, 2010, International Energy Agency, Cedex, Paris, 2010.
- [4] The International Energy Agency, KeyWorld Energy Statistics, 2013, International Energy Agency, Cedex, Paris, 2013.
- [5] H. De Keulenaer, R. Belmans, E. Blaustein, D. Chapman, A. De Almeida, B. De Wachter, P. Radgen, F. Isi, Energy Efficient Motor Driven Systems, European Copper Institute, Tervurenlaan, Brussels, Belgium, 2004.
- [6] O.V. Thorsen, M. Dalva, A survey of faults on induction motors in offshore oil industry, petrochemical industry, gas terminals and oil refineries, IEEE Paper No. PCIC-94-01, 1994.
- [7] J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, Prognostics and health management design for rotary machinery systems Reviews, methodology and applications, Mechanical Systems and Signal Processing 42, Elsevier 2014, pág. 314–334.
- [8] J. Yan, C. Guo, X.Wang, A dynamic multi-scale Markov model based methodology for remaining life prediction, Mechanical Systems and Signal Processing, Elsevier 2011, Vol. 2, pág. 1364–1376.
- [9] R. Rammohan, M.R. Taha, Exploratory Investigations for Intelligent Damage Prognosis using Hidden Markov Models. Systems, Man and Cybernetics, 2005 IEEE International Conference on, 12-12 Oct. 2005, Vol. 2, pág. 1524–1529.
- [10] Los Alamos National Laboratory. Damage Prognosis Workshop, Phoenix, Arizona, March 27–29, 2001.
- [11] International Standard ISO 13381-1. Condition monitoring and diagnostics of machines Prognostics Part 1: General guidelines, First edition 2004-11-01, Geneva, Switzerland, 2004.
- [12] Y. Li, S. Billington, C. Zhang, S. Danyluk, S. Liang, Adaptive prognostics for rolling element bearing condition, Mechanical System and Signal Processing, Vol. 13, pág. 103–113, 1999.

Referencias - II

- [13] T. Burgess, L. Shimbel, What is the prognosis on your maintenance program? Engineering & Mining Journal, Vol. 196, pág. 32, 1995.
- [14] J.T. Kim, R.H. Lyon, Cepstral analysis as a tool for robust processing, deverberation and detection of transients, Mechanical Systems and Signal Processing, Vol. 6, pág. 1–15, 1992.
- [15] W.J. Wang, P.D. McFadden, Application of wavelets to gearbox vibration signals for fault detection, Journal of Sound and Vibration, Vol. 192, pág. 927–939, 1996.
- [16] S. Darley, P. Robson, Application of wavelet transform to detect faults in rotating machinery, ABCM Symposium Series in Mechatronics, Vol. 1, pág. 616–624, 2004.
- [17] H. Teng, J. Zhao, X. Jia, Y. Jia, X. Zhang, L. Cai, Experimental Study on Gearbox Prognosis Using Total Life Vibration Analysis, 2011 Prognostics & System Health Management Conference (PHM2011 Shenzhen), IEEE 2011, pág. 1–6.
- [18] W. Achmad, Y. Bo-Suk, Machine health prognostics using survival probability and support vector machine, Expert Systems with Applications, Vol. 38, Elsevier 2011, pág. 8430–8437.
- [19] Z. Zhi-Jie, H. Chang-Hua, W.Wen-Bin, Z. Bang-Cheng, X. Dong-Ling, Z. Jian-Fei, Condition-based maintenance of dynamic systems using online failure prognosis and belief rule base, Expert Systems with Applications 39, 2012, Elsevier, pág 6140–6149.
- [20] K. Hack-Eun, A.C.C. Tan, J. Mathew, C. Byeong-Keun, Bearing fault prognosis based on health state probability estimation, Expert Systems with Applications, 2012, pág. 5200–5213.
- [21] E. Zio, F. Di Maio, A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system, Reliability Engineering and System Safety 95, 2010 Elsevier, pág 49– 57.
- [22] N. S. Jammu, P. K. Kankar, A Review on Prognosis of Rolling Element Bearings, International Journal of Engineering Science & Technology 2011, Vol. 3 Issue 10, pág 7497–7503, 2011.
- [23] S. Sajjad, H. Zaidi, S. Aviyente, M. Salman, S. Kwang-Kuen, E.G. Strangas, Prognosis of Gear Failures in DC Starter Motors Using Hidden Markov Models, IEEE Transactions on Industrial Electronics, Vol. 58, No. 5, May 2011, pág 1695–1705.

Referencias - III

- [24] H. Ocak, K. Loparo, HMM-Based Fault Detection and Diagnosis Scheme for Rolling Element Bearings, Journal of Vibration and Acoustics, Vol. 127, pág 299–306, 2005.
- [25] B. Wu, S. Yu, Y. Luo, C. Feng, Rolling Bearing Fault Diagnosis Method Based on SVM-HMM, ICMTMA, International Conference on Measuring Technology and Mechatronics Automation, 2010, Changsha City, pág 295–298, Marzo 2010.
- [26] H. Ocak, K.A. Loparo, A new bearing fault detection and diagnosis scheme based on hidden Markov modeling of vibration signals, Acoustics, Speech, and Signal Processing, 2001. Proceedings ICASSP 2001, IEEE International Conference on, vol.5, pág. 3141–3144, 2001.
- [27] Y.F. Martínez, H.A, Blandón, Desarrollo de una metodología para la detección de fallas a partir del análisis de vibraciones en rodamientos usando características de tiempo y modelos ocultos de Markov (HMM), Tesis, Ingeniería Eléctrica, Universidad Tecnológica de Pereira, Pereira, Colombia, 2013.
- [28] O. Cardona, Análisis tiempo-frecuencia de señales de vibraciones mecánicas para la detección de fallos en máquinas rotativas, Tesis de Maestría, Automatización Industrial, Universidad Nacional de Colombia, 2011.
- [29] J.F. Belsak, Adaptive Wavelet Transform Method to Identify Cracks in Gears. Laboratory for Computer Aided Engineering, University of Maribor, Eslovenia, 2000.
- [30] J.B. MacQueen, Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press: 1, pp. 281–297, 1967.
- [31] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A. Y. Wu, An Efficient k-Means Clustering Algorithm: Analysis and Implementation, IEEE Transactions on pattern analysis and machine intelligence, Vol. 24, No. 7, July 2002.
- [32] E. Yariv, Hidden Markov Processes, Proc. IEEE Transactions on Information Theory, Vol. 48, No. 6, pág. 1518–1569, June 2002.
- [33] L. Rabiner, A tutorial on hidden markov models and selected applications in speech recognition, Proceedings of IEEE, Vol 77, No. 2, pp. 257–285, 1989.
- [34] K.A. Loparo, Seeded Fault Test Data, Bearing Data Center, Case Western Reserve University, consultado en el URL: http://csegroups.case.edu/bearingdatacenter/pages/download-data-file en Marzo 31 de 2015.

GRACIAS

PREGUNTAS?