

AGRICULTURA INTELIGENTE EN EL ECUADOR.

MARCELO CALVACHE ULLOA, PhD. mcalvache20@gmail.com

ECUADOR: DISTRIBUCIÓN DEL USO DE LA TIERRA

USO DE LA TIERRA	SUPERFICIE (ha)	PORCENTAJE (%)
Cultivos permanentes y perennes	1′363 400	11.03 %
Cultivos transitorios y barbecho	1′231 675	9.96
Descanso	381 304	3.68
Pastos cultivados	3 357 167	26.36
Pastos naturales	1′129 701	9.13
Páramos	600 264	4.68
Montes y bosques	3 881 140	31.41
Otros usos	411 180	3.32
TOTAL	12′355 831	100.00

Fuente: MAG 2018

ECUADOR: USO DEL AGUA

SITUACIÓN	SUPERFICIE REGADA/ hectáreas
Puestas en servicio por el estado	170.000
Riego particular (haciendas, empresas agrícolas)	180 000
En manos de comunidades campesinas	150 000
Superficie bajo riego	500.000

Fuente: SIPAE 2016

PRODUCTIVIDAD DE CULTIVOS EN EL ECUADOR vs. CULTIVOS DE COLOMBIA, PERÚ Y ESTADOS UNIDOS EN TONELADAS MÉTRICAS/ ha

CULTIVOS	ECUADOR	COLOMBIA	PERÚ	USA
Arroz	3.72	5.32	5.82	6.55
Fréjol	2.13	1.08	800	3.000
Maíz	2.13	3.65	2.40	8.60
Soya	1.71	2.06	1.96	5.000
Papa	5.80	17.52	12.00	42.7

Papa/ Carchi: 14 TM/ ha/ 308 qq/ha

ECUADOR: INDICADORES SOCIALES

INDICADORES	ÁREA RURAL	ÁREA URBANA	TOTAL
Índice de pobreza	60.6 %	41.4 %	50.6 %
Necesidades básicas insatisfechas	75.8 %	37.1 %	52.8 %
Desnutrición	41.1 %	27.6 %	33.9 %
Analfabetismo	10.0 %	6.0 %	8.0 %

Fuente: CEPAL 2018

LA AGRICULTURA ECOLOGICA:

Es aquella agricultura "que se basa en sistemas de producción con aptitud de ser útiles a la sociedad INDEFINIDAMENTE", Económicamente RENTABLE, Ambientalmente AMIGABLE

Agricultura inteligente

"", : "la utilización adecuada de la tierra para los fines de producción, buscando aumentar la productividad para satisfacer las necesidades de la población, evitando, reduciendo y controlando los procesos por los cuales ella se degrada, a través del uso de tecnologías que sean capaces de cumplir con estos requisitos y adaptadas a los sistemas de producción locales"

ZONAS AGROECOLOGICAS APTAS PARA CULTIVOS Y PASTIZALES EN LA SIERRA

CLASE	CARACTERÍSTICAS DEL SUELO	Superficie (has)	%
1	Apto para cultivos y pastos	52.801	2
П	Limitación de Fósforo / Limitación de agua y Fósforo	220.924	7
III	Limitación de Drenaje	57.509	2
IV	Limitación por Mecanización	1,007.248	33
V	Limitación por Profundidad	50.921	2
VI	No Aptos	1,694.560	55
	TOTAL	3,083.961	100

REQUISITOS PARA DESARROLLAR UNA AGRICULTURA INTELIGENTE

a. Conservar los recursos productivos

b. Preservar el medio ambiente

Exigencias básicas de la variable Ecológica

c. Responder a los requerimientos sociales

Dimensión Socio económica

d. Ser económicamente competitiva y rentable. (SIG, Ap Internet)

LA TRANSICIÓN AGRICOLA

Reversión o Transición SUSTENTABLE

PRACTICAS AGRICOLAS ACTUALES

(uso de energía fósil, agroquímicos, hormonas sintéticas

PRACTICAS AGRICOLAS INTELIGENTES

(BPA, MIC, MIP, MIN, BPM, TICS)

Un conjunto de principios, normas y recomendaciones técnicas y administrativas, aplicables a cada uno de los eslabones de la cadena agroalimentaria, con el propósito de ofrecer al mercado productos de calidad e inocuos, producidos con un mínimo impacto ambiental (Tics).

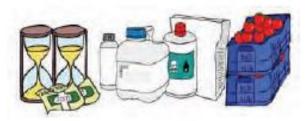
CON BPA

Bienestar animal Predio limpio Baños y depósitos

SIN BPA

Animales fatigados Predio contaminado Letrinas e infraestructura en mal estado

Control de la producción


Combinar y organizar archiv

Confusión y desconocimiento

Más ingresos Mejores precios por calidad Menores costos (\$) (- agroquímicos) Mayores rendimientos (Productividad)

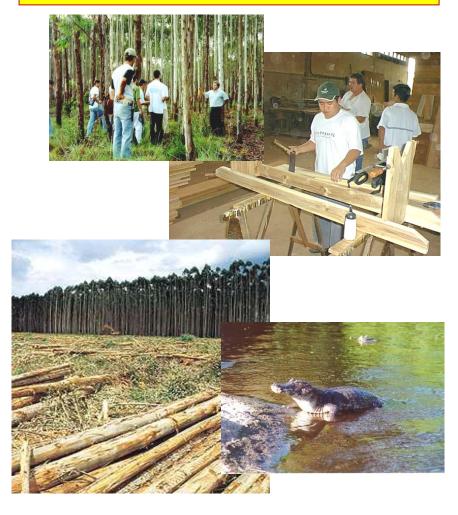
Menos ingreso Menores precios Mayores costos (\$) (+ agroquímicos) Menores rendimientos

Como nunca antes estamos en la mira/lupa de la sociedad en general (MIC)

- Precios y abastecimiento
- Utilización de áreas naturales
- Nitratos en el Agua
- Zonas de hipoxia
- Emisiones GEI
- Calidad del aire

"Tremendo incentivo/presión para utilizar insumos de forma adecuada"

Diferentes áreas de la agronomía (MIC, A.I)


Ciencias Exactas

Economía

Ciencias Forestales

Diferentes áreas de la agronomía

Agroindustria

Ciencia del Suelo

Alimentos y Nutrición

Zootecnia

Diferentes áreas de la agronomía

Genética

Producción Vegetal

Ciencias Biológicas

Erosión.....un problema serio de degradación ambiental

En Ecuador afecta al 50% de suelos cultivados

(15% de tierras degradadas están en el callejón interandino).

Falta de M.O. N, Mg, B, Zn

Agroforesteria

Erosión del suelo en Ecuador

Manejo del suelo

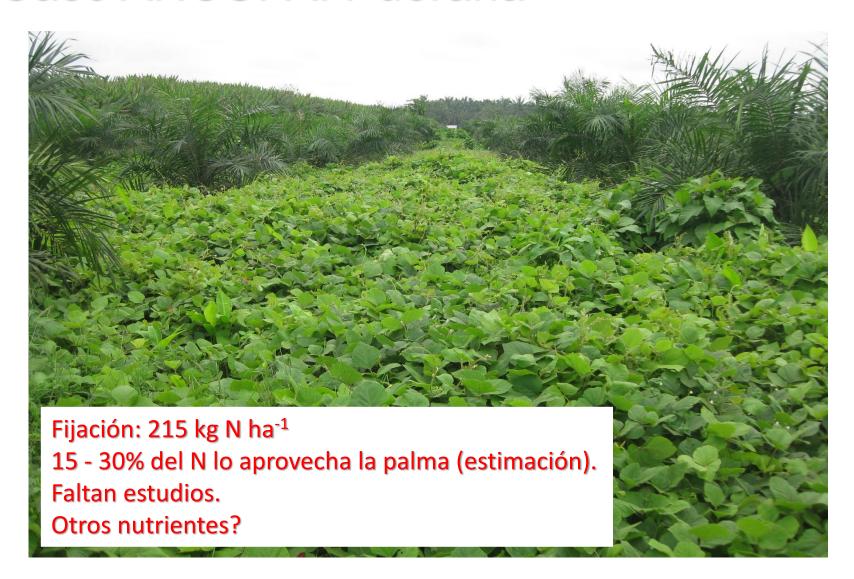
Beneficios de la cobertura

- protegen la superficie del suelo
- mejoran la conservación de la humedad
- aportan materia orgánica
- reciclan los nutrientes
- mejoran la estructura
- introducen un sistema de producción más sostenible

Siembra directa de maíz sobre rastrojos de avena negra

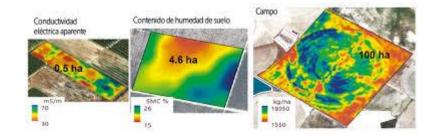
Siembra directa de soya sobre rastrojos de maíz año

Ejemplos de nuevas técnicas disponibles a través de la investigación – Integración Ganadería Agricultura (MIC)


SISTEMA SANTA FÉ: maíz con braquiária como pasto de cobertura

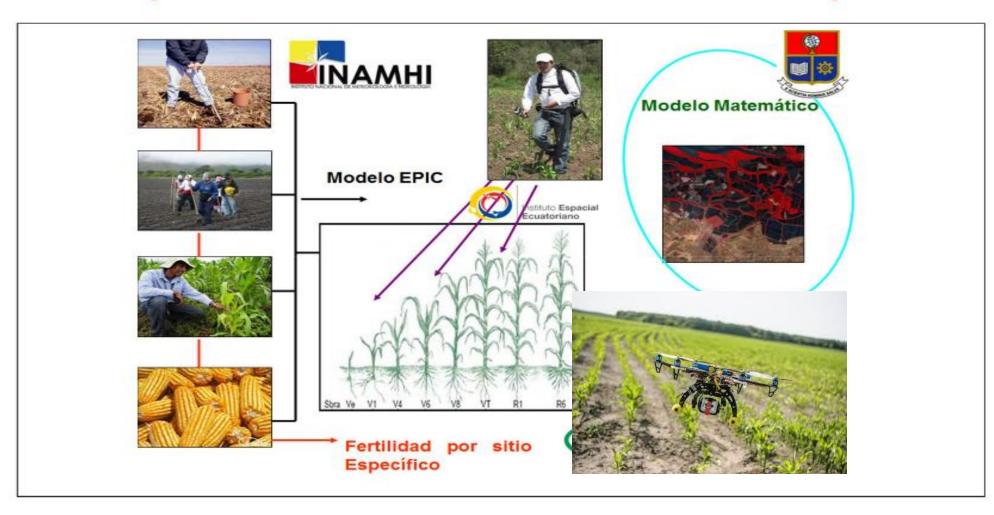
Ventajas de los cultivos de cobertura

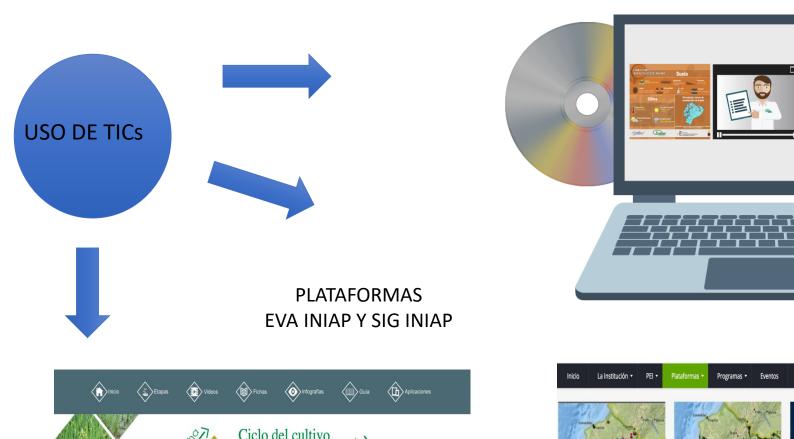
- ✓ Reducen la erosión.
- ✓ Incremento la M.O. y actividad biológica.
- ✓ Mejor infiltración y retención de humedad.
- ✓ Menores fluctuaciones de temperatura.
- ✓ Mejor ciclo de nutrientes (secuestro de C y fijación de N).
- ✓ Mejor estructura (agregados) del suelo.
- ✓ Control de malezas.
- ✓ Mejor eficiencia en el uso de fertilizantes.



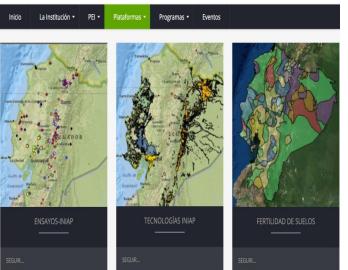
Caso ANCUPA: Pueraria

Uso de modelos hiperespectrales y espectrales en agricultura


- Estimación de superficie sembrada
- Predicción de cosecha
- Simulación al cambio climático.
- Mapas Agrologicos
- Mapas Taxonomicos de Suelos
- Deficiencias nutricionales y plagas.
- Mapeo de Fertilidad de suelos
- Mapeo de Materia Orgánica
- Mapeo de Humedad del Suelo



Proyectos Ejecutados


Capacidades actuales en servicios climáticos a sectores específicos

HERRAMIENTAS VIRTUALES DE APRENDIZAJE

Proyectos Ejecutados

"Incidencia del Cambio Climático y Nutrición en Cultivos de Arroz, Maíz Duro y Papa con Modelos de Predicción de Cosechas Mediante Métodos Espaciales y Espectrales (Maíz duro)"

Objetivos por fases institucionales

• INIAP – Fase agronómica

Estimar la respuesta de los cultivos de maíz duro, arroz y papa ante la omisión de nutrientes en zonas productoras

• INAMHI – Fase Agroclimática

Determinar la incidencia del Cambio Climático mediante tres escenarios en la producción de los cultivos de maíz duro, arroz y papa.

IEE— Fase Espacial/hiperespectral

Generar modelos hiperespectrales y espectrales para la predicción de cultivos (maíz duro), aplicando tecnologías espaciales.

.**Universidades**. Recolección de datos en campo

Proyectos Ejecutados

Resultados

Generación de información científica básica y aplicada obtenida en suelos de Ecuador en el varios cultivos de la Sierra y La Costa.

Importancia

Permite el adecuado establecimiento de políticas agrarias, que fortalezcan a los agricultores y la agroindustria ecuatoriana, productores de maíz duro, arroz, cana de azúcar, café, banano, pastos y papa de las zonas vinculadas en la presente investigación (Guayas, Los Ríos, El Oro, Manabí, Loja, Carchi, Chimborazo y Pichincha, Cotopaxi, Tungurahua).

	Práctica de A.I.	Adaptación	Productividad
Papa rea cosechada	Abonos verdes Adopción baja (<30%)	Mayor retención de humedad en el suelo, evita pérdidas de cosecha durante períodos de sequía.	Los insumos orgánicos pueden incrementar la productividad y reducir costos de producción.
Pa l 4% del área	Agricultura de conservación Adopción baja (<30%)	Mayor retención de humedad en el suelo, evita pérdidas de cosecha durante períodos de sequía.	Mayores rendimientos.

	Práctica de A.I	Adaptación	Productividad
Banano s cosechada	Agroforestería Adopción baja (<30%)	Regula la temperatura del dosel, mayor humedad en el suelo, mismos rendimientos durante sequías.	Diversificación de medios de vida pero no se reportan beneficios significativos en incrementos de producción.
Plátano.Bana 11% del área cosech	Buenas prácticas agrícolas (BPA) Adopción media (40–60%). Riegos y Drenajes	Mayor estabilidad en rendimientos incluso bajo alta variabilidad climática.	Mayores rendimientos.

		Práctica de A.I.	Adaptación	Productividad
Azúcar cosechada	Manejo eficiente del agua. Riegos Adopción baja (<30%)	Menor demanda de agua, especialmente durante temporadas de sequía.	Mayor productividad y estabilidad.	
	Caña de Aza 10% del área cos	Variedades resistentes a plagas y enfermedades Adopción alta (>60%)	Evita pérdidas de cosecha por incremento en plagas y enfermedades durante períodos de estrés abiótico.	Evita pérdidas significativas en la producción.

	Práctica A.I.	Adaptación	Productividad
32 cosechada	Variedades tolerantes al calor. Adopción alta (>60%)	Evita pérdidas de rendimiento por esterilidad causada por altas temperaturas durante la floración.	Mayor estabilidad en la producción.
Arroz 12% del área co	Manejo eficiente de agua en distritos de riego. Adopción media (30–60%) Fertilización Balanceada	Menor demanda de agua puede reducir pérdidas en el rendimiento durante temporadas de sequía.	Mayor estabilidad en la producción.

	Práctica de A.I	Adaptación	Productividad
Maíz 13% del área cosechada	Manejo eficiente de agua. Riegos Adopción media (30– 60%)	Mayor estabilidad de rendimientos, incluso bajo alta variabilidad climática.	Mayores rendimientos.
M 13% del áre	Manejo de suelos. Adopción media (30– 60%) M.I.N.	Mayor estabilidad en rendimientos, incluso bajo alta variabilidad climática.	Mayor productividad y estabilidad.

	Práctica A.I.	Adaptación	Productividad
Café área cosechada	Agroforestería. Adopción media (30–60%). M.I.N.	Regula la temperatura del dosel, reduce la presión de la roya y las pérdidas en el rendimiento por insectos.	Diversificación de medios de vida. No genera beneficios significativos en la productividad, pero el sombrío mejora calidad del café, generando mayores ingresos.
Cal 17% del área	Variedades resistentes a plagas y enfermedades. Adopción alta (>60%)	Evita pérdidas en rendimientos durante períodos de alta variabilidad climática.	Evita pérdidas en rendimientos.

	Práctica A.I.	Adaptación	Productividad
ado uso de la tierra	Sistemas silvopastoriles Adopción baja (<30%) Pastos Mejorados	Mayor resiliencia de los sistemas de producción pecuaria a la variabilidad climática.	En zonas de alto potencial, tasas de ocupación ganadera de 2–3 cabezas por hectárea (promedio 0.5 en Ecuador).
Ganado 35% del aréa de uso	Asociaciones de gramíneas con leguminosas. Adopción baja (<30%)	Mejor calidad de suelo (física y química) que contribuye a incrementar la resiliencia climática.	Aumento de productividad y calidad de carne y leche gracias a una mejor alimentación del ganado.

CONCLUSION

La Agricultura de Inteligente en el Ecuador

- 1. Manejar adecuadamente sus recursos naturales agroproductivos utilizando las Tlcs, protegiendo la salud y el ambiente.
- 2. Abaratar los costos de producción
- 3. Obtener una producción diversificada de calidad para abastecer los mercados locales e internacionales.
- 4. Ingresos significativos, dado los precios diferenciados que tienen los productos limpios.
- 5. Creación de fuentes de trabajo.