

Loreto Gonzalez-Hernandez[↑], Birgitta Lindström,

VI CONGRESO LATINOAMERICANO DE INGENIERIA DE SICO SA VELLE DE LA CONGRESO LA TINOAMERICANO DE INGENIERIA DE SICO SA VELLE DE SA VELLE DE LA CONGRESIONA DEL CONGRESIONA DE LA CONGRESIONA DE LA CONGRESIONA DE LA CONGRESIONA DE LA CONGRESIONA DEL CONGRESIONA DE LA CONGRESIONA DEL CONGRESIONA DE LA CONGRESIONA DE LA CONGRESIONA DE LA CONG

14,15 y 16 Octubre de 2020 - 100% online

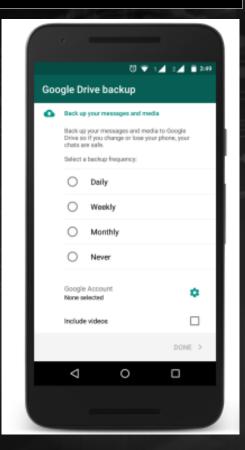
de casos de prueba

Uso de la terquedad mutante en el problema de priorización y minimización

Dra. Ana Loreto González Hernández

loreto@gmu.edu

address both problems.


Test case prioritization (TCP) has been studied for years smaller test, exist, that still achieves the same of and many prioritiza 14, 15 y 16 democtubre 2020

Introducción – Software Testing

Las pruebas de software (Software Testing) se realizan para identificar posibles fallos de funcionamiento, configuración o usabilidad de un programa o aplicación.

Daily, Include videos
Weekly, Include videos
Monthly, Include videos
Never

Introducción

- Se suelen crear conjuntos de prueba grandes
- No se cuenta con el tiempo para ejecutarlos todos

Algunas soluciones:

- ✓ Minimizar o reducir el tamaño del conjunto (TCM)
- ✓ Priorizar cuáles pruebas ejecutar primero (TCP)

Problema de Investigación

TCM intenta reducir el número de casos de prueba usando alguna noción de redundancia, manteniendo la satisfacción de los requisitos

TEST 3

TEST 4

TEST 3 TEST 4 TEST 4

TCP es un proceso para decidir el orden de ejecución de los casos de prueba en función de alguna estrategia de priorización

TEST 1
TEST 2
TEST 4

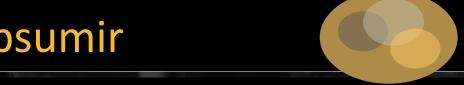
Pruebas de Mutación

```
int max(int x, int y){
   int mx;
   mx = (x>y)?x:y;
   return mx;
}
```

```
int max(int x, int y){
   int mx;

   mx = (x<y)?x:y;
   return mx;
}</pre>
```


int max(int x, int y){
 int mx;
 mx = (x==y)?x:y;
 return mx;
}



o HTML

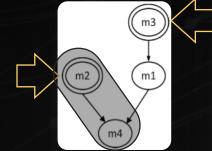
Analítico

Subsumir

Se va a formar un equipo de trabajo para un Proyecto:

o javascript

- o Phyton
- O HTML


Conocimiento en:

- Phyton
- o javascript
- O HTML
- Analítico

Mutantes subsumidos

- Algunos mutantes son subsumidos por otros
- Un caso de prueba que mata al mutante ma también mata a mb

	m_1	m_2	m_3	m_4	
t_1	√	\checkmark		\checkmark	
t_2	✓		✓	✓	4_
t_3				✓	
t_4		\checkmark		\checkmark	

Si elegimos aquellos casos de prueba de cada nodo raíz que matan el número máximo de mutantes, el número de casos de prueba necesarios para eliminar todos los mutantes es mínimo.

Figura: Kurtz B., Ammann P., Delamaro M., Offutt J. and Deng L. "Mutant Subsumption Graphs". Mutation 2014, Cleveland, OH, March 2014.

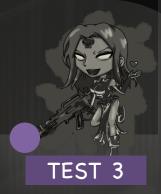
UNIRE/ CORPORACIÓN U

Terquedad Mutante

Matado por

2

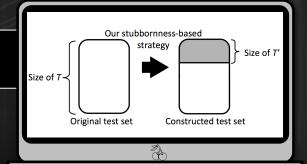
3


2

1

¿Qué tan difícil es matar un mutante?

UNIRE CORPORACIÓN U


Metodología

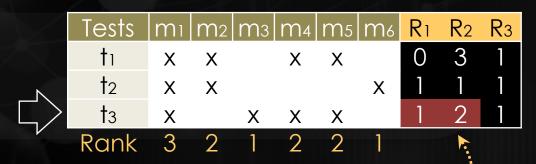
Usar la terquedad mutante para asignar puntaje a los mutantes

Asignar puntaje
a cada caso de prueba
con base en el número
de "mutantes tercos"
que mata

Seleccionar los casos de prueba con la mejor puntuación

Todos los casos de prueba del conjunto original de mantienen Tamaño T' = posición del 1 er test que satisfice el "mutation score"

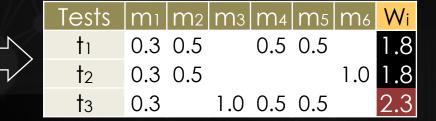
Estrategias basadas en la terquedad mutante



- 1. Rank-Stubbornness Model [RSM]
- 2. Weight-Stubbornness Model [WSM]
- 3. Hybrid-Stubbornness Model [HSM]

Rank-Stubbornness Model

- El RSM asigna un rango a cada mutante con base en el número de casos de prueba que lo matan
- Se selecciona el caso de prueba que mata el mayor número de mutantes con el rango más alto


Criterio de desempate: avanzar al siguiente rango

W S M

Weight-Stubbornness Model

- ★ El WSM asigna un peso de terquedad ω a cada mutante (1/Rank)
- A cada conjunto de prueba se le asigna un puntaje w derivado de la suma de peso de cada mutante que mata

Tests	mı	m ₂	m ₃	m4	m ₅	m6
†1	Χ	Χ		Χ	Χ	
†2	X	X				X
†3	X		Χ	Χ	Χ	
Rank	3	2	1	2	2	1
ω	0.3	0.5	1.0	0.5	0.5	1.0

Hybrid-Stubbornness Model

1. El HSM utiliza primero la estrategia RSM hasta que todos los mutantes de rango 1 son aniquilados

2. Posteriormente usa el WSM hasta matar a todos

los mutantes

Criterio de desempate:

Se elige un caso de prueba al azar

Tests	mı	m ₂	тз	m4	m ₅	m6	Wi
† 1	0.3	0.5		0.5	0.5	0.5	1.0
†2	0.3	0.5				0.5	1.0
†3	0.3		1.0	0.5	0.5		

Diseño experimental

Se utilizaron **** programas** del repositorio Siemens, usados también por Ammann et al.

ID	Program	Orig #Tests	inal sets #Mutants	Mutation #Tests	adequate #Mutants
P1	print_tokens	512	4322	512	3711
P2	print_tokens2	512	4734	512	4047
P3	replace	512	11080	509	8783
P4	schedule	512	2108	512	1838
P5	schedule2	512	2626	512	2131
P6	tcas	512	2384	506	1957
P7	totinfo	512	6693	512	5821

Métricas

Minimización

Tamaño T'

Priorización

APMK*

Tiempo

Tiempo de ejecución

*Average Percentage of Mutants Killed

- Se crearonn 30 ordenaciones para cada conunto de prueba
- \Re Se utilizaron pruebas estadísticas con $\alpha = 0.05$ para verificar si existía diferencia significative en el desempeño de las estrategias

UNIRE

Minimización

Promedio de número de casos de prueba en el conjunto minimizado

ID	TSM	RSM	WSM	HSM	OPT-GDY	ARND	SBM	RND
P1	12.4	9.0	10.0	9.0	9.0	28.2	361.0	399.5
P2	12.1	8.0	9.0	9.0	9.0	28.7	155.0	331.7
P3	45.0	40.0	44.0	41.0	44.4	86.2	446.0	488.4
P4	14.5	13.0	12.0	12.0	14.0	28.5	470.0	392.9
P5	17.1	14.0	14.0	14.0	16.0	30.8	503.0	422.0
P6	41.4	39.0	39.0	39.0	41.2	65.8	374.7	471.1
P7	13.3	12.0	13.0	13.0	16.0	30.9	362.0	421.6

Strategy	Mean rank
RSM	1.64
HSM	2.00
WSM	2.36
TSM	4.00

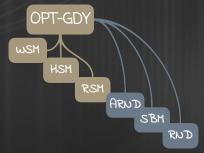
κ	Strategy	$z = (R_0 - R_\kappa)/SE$	ρ	lpha'	SD
1	WSM	(4.00-2.36)/0.69 = 2.38	0.017	0.017	χ
2	HSM	(4.00-2.00)/0.69 = 2.90	0.004	0.025	√
3	RSM	(4.00-1.64)/0.69 = 3.42	0.001	0.050	✓

TSM es el algoritmo de control

Priorización

Promedio de APMK de cada estrategia

ID	Our proposal		Previous strategies				
	RSM	WSM	HSM	OPT-GDY	ARND	SBM	RND
P1	0.997	0.998	0.998	0.999	0.993	0.995	0.979
P2	0.998	0.999	0.998	0.999	0.994	0.997	0.992
P3	0.992	0.996	0.992	0.997	0.984	0.984	0.972
P4	0.994	0.998	0.995	0.999	0.995	0.969	0.986
P5	0.996	0.997	0.996	0.998	0.994	0.984	0.979
P6	0.985	0.991	0.986	0.993	0.976	0.877	0.949
P7	0.998	0.998	0.998	0.999	0.995	0.991	0.990


Strategy	Mean rank
OPT-GDY	1.07
WSM	2.14
HSM	3.21
RSM	3.79
ARND	5.14
SBM	5.93
RND	6.71

κ	Strategy	$z = (R_0 - R_\kappa)/SE$	ρ	lpha'	SD
1	WSM	(1.07-2.14)/1.16 = -0.93	0.352	0.008	χ
2	HSM	(1.07-3.21)/1.16 = -1.86	0.063	0.010	χ
3	RSM	(1.07-3.79)/1.16 = -2.35	0.019	0.013	χ
4	ARND	(1.07-5.14)/1.16 = -3.53	4E-04	0.017	√
5	SBM	(1.07-5.93)/1.16 = -4.21	3E-05	0.025	\checkmark
6	RND	(1.07-6.71)/1.16 = -4.89	\ll 2E-05	0.050	\checkmark

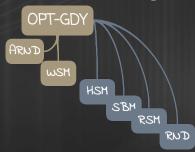
OPT-G es el algoritmo de control

UNIRE

Tiempo de Ejecución

Tiempo promedio de ejecución de cada estrategia

ID	0	ur propos	sal	Pr	evious stra	ategies	
	RSM	WSM	HSM	OPT-GDY	ARND	SBM	RND
P1	286.6	282.2	282.9	267.7	270.4	280.6	285.0
P2	305.4	303.9	304.4	287.1	287.4	295.1	305.3
P3	668.1	656.4	663.2	639.1	640.6	674.1	682.4
P4	140.1	137.9	138.4	131.6	132.1	141.6	141.3
P5	179.2	178.9	180.3	169.6	169.6	182.9	184.0
P6	133.5	131.6	133.3	131.0	131.0	139.0	140.2
P7	441.4	433.3	438.2	411.1	412.3	436.1	442.5


Strategy	Mean rank
OPT-GDY	1.14
ARND	1.86
WSM	3.29
HSM	4.57
SBM	5.00
RSM	5.57
RND	6.57

κ	Strategy	$z = (R_0 - R_\kappa)/SE$	ho	lpha'	SD
1	ARND	(1.14-1.86)/1.16 = -0.62	0.535	0.008	χ
2	WSM	(1.14-3.29)/1.16 = -1.86	0.063	0.010	χ
3	HSM	(1.14-4.57)/1.16 = -2.97	0.003	0.013	✓
4	SBM	(1.14-5.00)/1.16 = -3.34	0.002	0.017	\checkmark
5	RSM	(1.14-5.57)/1.16 = -3.84	2E-04	0.025	\checkmark
6	RND	(1.14-6.57)/1.16 = -4.70	\ll 2E-05	0.050	\checkmark

OPT-G es el algoritmo de control

Conclusiones y Contribuciones

- *El RSM y el HSM generan conjuntos de prueba más pequeños que el **TSM**
- A diferencia de TSM, las estrategias propuestas priorizan la ejecución de los casos de prueba

ID	TSM	RSM	WSM	HSM	OPT-GDY	ARND	SBM	RND
P1	12.4	9.0			9.0			
P2	12.1	8.0			9.0			
P3	45.0	40.0			44.4			
P4	14.5	13.0			14.0			
P5	17.1	14.0			16.0			
P6	41.4	39.0			41.2			
P7	13.3	12.0			16.0			

RSM generó conjuntos de prueba más pequeños que **OPT-GDY**

Conclusiones y Contribuciones

- TODUESTAS SBM
- El APMK para todas las estrategias propuestas (RSM, WSM, HSM) es tan bueno como el de OPT-GDY (la mejor técnica)
- OPT-GDY prioriza casos de prueba que matan mutantes redundantes. Las estrategias propuestas priorizan casos de preuaba que matan mutantes no redundantes (tercos) evitando que casos de prueba con redundancia se incluyan en el conjunto

iPreguntas?

LATINOAMERICANO DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

Uso de la terquedad mutante en el problema de priorización y minimización de casos de prueba

Gracias

por su

atención

Ana Loreto Gonzalez Hernandez loreto@gmu.edu